sin
2x + cos 2x = 1
1
+ cot 2x = csc 2x
tan
2x + 1 = sec 2x
ENGELSHON'S EQUATION
a/c = sin A/ sin C b/c = sin B/sin C
Theorem Engelshon's Equation
(a+b)/c = (sin A + sin B)/ sin C
(a-b)/c = (sin A - sin B)/sin C
THE LAW OF COSINE
a2
= b2 + c2 – 2bc.cos A
AREA OF A TRIANGLE
A= 1/2 a.b.sin C
or
A= (s(s-a)(s-b)(s-c))1/2
Inscribed Circle
r = (((s-a)(s-b)(s-c)/s))1/2
Circumscribed Circle
r = abc/(4(s(s-a)(s-b)(s-c))1/2)
ANGLE-ADDITION AND ANGLE SUBSTRACTION
cos (A + B) = cos A.cos B - sin A.sin B
cos (A - B) = cos A.cos B + sin A.sin B
sin (A + B) = sin A. cos B + cos A. sin B
sin (A - B) = sin A. cos B - cos A. sin B
tan (A + B) = (tan A + tan B)/ (1 - tan A. tan B)
tan (A - B) = (tan A - tan B)/ (1 + tan A. tan B)
DOUBLE ANGLES FORMULAS
derived cos 2A within cos (A + B) formula and subtitute B with A so that:
cos (A + A) = cos A.cos A - sin A.sinA
cos 2A = cos 2A - sin 2A
if you subtitute sin 2A with (1- cos 2A) or cos 2A with (1- sin 2A)
cos 2A = 2cos 2A - 1
or
cos 2A = 1 - 2sin 2A
the same goes for tangent and sine formulas
so that:
sin 2A = 2 sin A. cos A
and
tan 2A = 2 tan A/ (1- tan 2A)
THE PRODUCT FORMULAS
2 sin A. cos B = sin (A + B) + sin (A - B)
2 cos A. sin B = sin (A + B) - sin (A - B)
2 cos A. cos B = cos (A + B) + cos (A - B)
- 2 sin A. sin B = cos (A + B) + cos (A - B)
THE SUM AND DIFFERENCE FORMULA
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2
cos A + cos B = 2 cos (A+B)/2 cos (A+B)/2
cos A - cos B = -2 sin (A+B)/2 sin (A-B)/2
THEOREM
y = a sin x + b cos x = (a 2 + b 2)1/2sin (x + s)
ANGLE-ADDITION AND ANGLE SUBSTRACTION
cos (A + B) = cos A.cos B - sin A.sin B
cos (A - B) = cos A.cos B + sin A.sin B
sin (A + B) = sin A. cos B + cos A. sin B
sin (A - B) = sin A. cos B - cos A. sin B
tan (A + B) = (tan A + tan B)/ (1 - tan A. tan B)
tan (A - B) = (tan A - tan B)/ (1 + tan A. tan B)
DOUBLE ANGLES FORMULAS
derived cos 2A within cos (A + B) formula and subtitute B with A so that:
cos (A + A) = cos A.cos A - sin A.sinA
cos 2A = cos 2A - sin 2A
if you subtitute sin 2A with (1- cos 2A) or cos 2A with (1- sin 2A)
cos 2A = 2cos 2A - 1
or
cos 2A = 1 - 2sin 2A
the same goes for tangent and sine formulas
so that:
sin 2A = 2 sin A. cos A
and
tan 2A = 2 tan A/ (1- tan 2A)
THE PRODUCT FORMULAS
2 sin A. cos B = sin (A + B) + sin (A - B)
2 cos A. sin B = sin (A + B) - sin (A - B)
2 cos A. cos B = cos (A + B) + cos (A - B)
- 2 sin A. sin B = cos (A + B) + cos (A - B)
THE SUM AND DIFFERENCE FORMULA
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin A - sin B = 2 cos (A+B)/2 sin (A-B)/2
cos A + cos B = 2 cos (A+B)/2 cos (A+B)/2
cos A - cos B = -2 sin (A+B)/2 sin (A-B)/2
THEOREM
y = a sin x + b cos x = (a 2 + b 2)1/2sin (x + s)
No comments:
Post a Comment